Pierogoids: An Extended Boid Implementation

6.837 Graphics
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Claire Cheng
ccheng00@mit.edu

1. MOTIVATION

The goal is to simulate 3D flocking behavior of groups
of bird-like objects. We were inspired by the simplicity
and realistic nature of existing boid simulations and
wanted to implement our own twist.

Boid simulations utilize relatively simple rules, but
complex behaviors arise from the interplay between
them. Without implementing any sort of Al or individual
control for any boid, they collectively affect one another
to create the flocking behavior seen.

Additionally, we decided to inject our own creative
twist to the traditional bird model. Instead of birds or
triangles, our subjects were 3D pierogiesﬂ and we added
extensions such as user-input sliders, pierogi point-of-
view, and other forces that are detailed in Section IV.

< ¥ S

Fig. 1. Pierogi 3D Model from Studenckie Koto Astronautyczne

II. BACKGROUND

Our simulation is based on Craig Reynolds’ boids
pape1E| in 1987, which aimed to model flocking behavior
of birds and produced a simulation that lay somewhere
between predictability and randomness — the so-called
edge of chaos. The overarching concept is that the
individual behavior of each bird matters less so than the

Uhttps://www.facebook.com/SKA PW/posts/3403330286371177
Zhttps://dl.acm.org/doi/10.1145/37402.37406

Kye Burchard
kyeb@mit.edu

holistic group behavior, which makes it easy to model
with relatively simple mechanics.

Boid simulations are still widely used, with a variety
of extensions and changes. Beyond just video games,
they have been used in swarm robotics for controlling
UAVs, CGI bat swarms, and even for generating motions
for armies on foot or horseback in movies and TV shows.

III. APPROACH

Starting with the codebase from assignment 3, we built
a box in which the simulation is contained in order to
keep the boids in camera view forever.

The rules governing flock behavior can be separated
into 3 main components:

e Separation — avoid getting too close to each other
or colliding

o Alignment — to move in the same general direc-
tion, attempt to match the average velocity of the
flock

¢ Cohesion — to stick together, attempt to match the
average position of the flock

At each time step of the simulation, we compute a
“force” applied by each rule, multiply it by a user-
determined coefficient, then integrate to determine the
next position and velocity.

A. Separation

Each pierogi in the flock is subjected to a separation
“force” in the direction of a vector, which is calculated
by averaging over the weighted directions from the
pierogi to each of the other pierogies.

Both the desired separation distance and a force co-
efficient are user adjustable.

B. Alignment

Each pierogi in the flock is also subjected to an
alignment “force,” which is a vector that points in the
direction of the average velocity of the entire flock.

Our alignment force also includes a fov or “field of
view” parameter. Only boids within the fov distance
are considered part of the flock, and any outside of


https://www.facebook.com/SKA.PW/posts/3403330286371177
https://dl.acm.org/doi/10.1145/37402.37406

steer = vec3(0);

count = 0;

for (boid boids) {
d = dist (current_boid, boid);
dir = cur_pos - boid.pos;

if (d < desired_separation) {
steer += normalize(dir) /d;
count++;
}
}

return steer/count;

Fig. 2. Pseudocode for the separation algorithm.

steer = vec3(0);
count = 0;
for (boid boids) {
d = dist (current_boid, boid);

if (d < fov) {
steer += boid.velocity;
count++;
}
}

return steer/count - cur_velocity;

Fig. 3. Pseudocode for the alignment algorithm.

that are not included in the force computation. This
is a simplified way to account for the complexities of
individual vision in flocks.

C. Cohesion

Each pierogi is forced to stay within the flock by a
cohesion “force,” a vector that points toward the average
position of all pierogis.

The strength of the cohesion force is also user-
adjustable. Cohesion also takes the fov parameter into
account.

steer = vec3(0);
count = 0;
for (boid boids) {
d = dist (current_boid, boid);

if (d < fov) {
steer += boid.pos;
count++;
}
}

return steer/count - cur_pos;

Fig. 4. Pseudocode for the cohesion algorithm.

D. Avoidance

Beyond the simple boid modeﬂ, we also added walls.

In order to prevent collisions with walls, there are a
variety of approaches that can be takelﬂ Rather than
implementing a computationally expensive Al model of
“vision” for each pierogi, we took the “force field”
approach and implemented an exponentially-increasing
field pushing boids away if they’re too close to any of
the walls. With a some tuning, this approach resulted in
solid, consistent avoidance motion.

Since our environment takes the shape of a box, the
force field has a sort of “corner” where pierogies will
(rarely) occasionally get stuck in, typically cornered by
a predator (see Section VI for a discussion). We explored
several solutions to this. For example, using a rounded
(spherical) force field instead of one purely proportional
to the distance from the walls prevented pierogies from
becoming cornered, but created an issue where the flock
would very strongly tend to just skim around the sphere
in a circle. with no interesting motion.

IV. EXTENSIONS
A. Adjustable parameters

A user interface was implemented in order to easily
change parameters of the simulation, creating a more
useful, interactive simulation.

B. Predator

Birds tend to scatter in a frenzied fashion when faced
with a predatory animal, and we extended this to our
flock of pierogies. In this case, our predator is a fork, and
the fork would closely follow the flock as the pierogies
themselves are strongly repelled by the fork and swarm
every which way to avoid it.

Fig. 5. Pierogies scattering away from fork

3Many implementations simply “wrap” around the screen at the
borders. While this does provide interesting behavior, we found it to
be unrealistic. Our model is closer to what a game or animation might
actually use.

4https://www.red3d.com/cwr/nobump/nobump.html


https://www.red3d.com/cwr/nobump/nobump.html

This was accomplished by adding a large force to each
pierogi in the opposing direction of the vector pointing
from itself to the predator. It can be thought of as a
stronger version of the Separation force mentioned in
Section III.

C. Attractor

Similar to how birds swarm over crumbs of bread on
the street, attractors draw the flock towards a particular
point. Our attractor was a simple red sphere, and upon
activation, the flock would all turn and race towards it.

Fig. 6. Pierogies swarming towards attractor sphere

This was accomplished by adding a large force to each
pierogi in the direction of the vector pointing from itself
to the attractor. It can be thought of as a stronger version
of the Cohesion force mentioned in Section III, this time
with a stationary subject. The attractor turns “off” once
the pierogis reach it, and the attractor can be reactivated
in a different position by user input.

D. Point-of-view
To provide a more interesting camera angle, we im-

plemented a second camera mode that puts you in the
metaphorical driver’s seat as one of the pierogies.

V. RESULTS

Our pierogoid simulation appears reasonably realistic,
and the extensions along with the user input add a nice
touch of customizability.

A. Applications

Through the controls, application users can achieve
a variety of interesting behaviors. Depending on the
game genre’} a simulation like this would be extremely
useful for keeping computation overhead low for realistic
flock/herd/school behavior. One can imagine placing an
attractor node at a character’s location temporarily to
cause the flock to swarm toward them.

SWe’re imagining a food-based FPS or horror genre, although a
simple asset swap could substantially increase its versatility.

Fig. 7. Visualization from pierogi POV

Fig. 8. General flocking behavior and UI sliders

B. Performance

0.020
0.015

0.010

time taken

0.005

0.000

0 200 400 600 800 1000
number of pierogies

1200 1400

Fig. 9. Performance plot — computation time per frame vs. number
of pierogies (IV)

Our implementation was focused on creating a vi-
sually interesting simulation, and did not attempt to
prioritize performance. Much of the computation for the
forces on each pierogi at each time step is duplicated
across each one.

However, since we’re computer engineers, we decided
to test performance anyway. For a real-time graphics ap-



plication, simulation computation speed is an important
result to evaluate.

To test performance, we initially recorded frameratesﬂ
Using this method, we were easily able to achieve over
500 pierogies at a reasonableﬂ frame rate.

We quickly noticed that the main bottleneck in per-
formance for this system was the actual rendering, while
we were more interested in the performance of our
algorithm. Measuring just the section of our code used
to update the velocities and positions at every time step
resulted in much more stable times.

The performance matches what is expected, given
the simple algorithms we implemented. Let N be the
number of pierogies present. Since each pierogi requires
an order-N computation (looping over the rest of the
flock for each of the 3 main forces), we expect an O(N?)
runtime per frame. Indeed, fig. 0] shows a quadratic
curve.

The boid algorithm, as we implemented it, is inher-
ently O(N?). The Separation algorithm must be O(N?),
since it computes a difference vector between every
possible pair of boids in the flock. Our version also must
be O(N?) in Alignment and Cohesion as well, due to
the non-linearity introduced by the fov term simulating
a “field of view” for each boid.

However, there are still performance gains to be had
over our naive implementation. For example, the same
distance and difference vectors are computed several
times for each pair of boids since each of the 3 forces
are separated into functions — combining into one loop
would allow us to compute difference/distance vectors
once per pair of boids per frame.

Fig. 10.
performance testing.

A flock of over 800 pierogies, taken while conducting

6Computed using the reciprocal of delta_time per frame
7We defined “reasonable” as 30 frames per second, but recognize
that some people may have higher standards than that.

C. Demonstration of results

A live-recorded video demonstrating most features has
been posted on YouTubeﬂ

VI. CHALLENGES

Due to the “random” nature of the boids we sometimes
ran into strange behaviors of the flock. One problem that
arose was with cancelling forces. Some of the boids,
when cornered by a predator, would stutter in place until
one of the contributing forces is readjusted via user input
slider, such as the wall force.

Since we focused on modelling flock behavior rather
than individualistic behavior, another issue we encoun-
tered was that when drawn towards an attractor object,
the flock would sometimes begin orbiting the object in
the case of overshooting its position, instead of turning
around and aiming directly at it, since none of the
pierogies were permitted to break away from the flock.

Bounds were also somewhat difficult to implement
since our “separation” and “wall forces” were repellent
forces, instead of robust 3D collision detection.

VII. CONCLUSION

There are still several areas of work we would like to

explore further:

o Occasionally, the bug mentioned where pierogies
become cornered by a predator still occurs. We
would like to explore further ways to fix this in a
reasonable way, such as avoiding corners altogether.

o Performance is far from optimal. See the Section
V-B for a discussion.

o Since we perform vector operations on position
and velocity, the motion can occasionally look too-
quick — especially when turning tight corners.
Exploring approaches that operate on angle and
angular velocity/momentum while maintaining a
more constant velocity might be able to capture real
flocking animal motion better.

o The box our pierogies are trapped in is rather
limited. A more open-air environment would be
much healthier for them, and could result in more
interesting behavior if left to their own devices
surrounded by new objects to flock around.

Overall, we were able to implement a successful 3D
simulation of flocking behavior that results in believable
behavior. The motions of the flock are realistic enough to
be used in a quick scene in a movie or game. We enjoyed
working on this project a lot, and hope you enjoy the
results as well.

Shttps://youtu.be/30657Bs5SEA!


https://youtu.be/30657Bs5SEA

	Motivation
	Background
	Approach
	Separation
	Alignment
	Cohesion
	Avoidance

	Extensions
	Adjustable parameters
	Predator
	Attractor
	Point-of-view

	Results
	Applications
	Performance
	Demonstration of results

	Challenges
	Conclusion

